
May5th, 2010

Y. Chao

Some Thoughts on High Level Application Demands

Many already addressed in the past two days Not repeated here

Only questions, No answers

Why XAL?

 Infrastructure built to modern software engineering standard

 Structure & organization – well thought out

 Suite of tools – Versatile, capable, ready to apply

 Extensibility for developers

But this is a view from someone like me (a Sales Rep.?)

Who are the real customers?

 Local code developer (Software, Physicists, ……)

 End user (Operators, Physicists, System experts, ……)

The speed at which the customer is lost can be very fast

 Too many hoops to jump through in developing the application

 Too many hoops in running the application

 Not intuitive enough

 Too time consuming to execute

 Can’t deliver what’s advertised / what’s really needed

 Does not seem indispensable (didn’t make my life any different)

 Process crash / conflicts, erratic behaviour

 Poor documentation / online help

 Poor support

 Wrong outcome!

Negative “word of mouth” is all it takes to quickly kill an actually very good tool.

Second chance rarely happens.

So what will make a tool (XAL) gain traction?

The strength of XAL must not be overshadowed by superficial “nuisances”

(if at all)

To be determined: Core feature, or site-specific extension?

Many high level issues, but enabling provisions may need be made at low level

For Code Developers:

 Software engineers

o Tool is structured up to software engineering standards

o Relatively streamlined development protocols

o Maintainability – How can this be built-in for high level apps?

 Avoid interdependency – Always possible? Always desirable? How to

ensure structure integrity?

 Synchronized upgrade of entire hierarchy – Low to high level, model, file

structure, database, ……

 How about Jython & Matlab scripts?

 Physicists

o Relatively streamlined development protocols

o Scalability

o Efficient algorithm-to-prototype turn-around

 Competent math toolbox

 Competent and “comprehensive” modeling capability

 Competent and “comprehensive” logistic functions (plotting, archiving,…)

 Ability to efficiently implement new devices and processes in the model

 Algorithm testing platform (realistic machine simulation, realistic

diagnostic/control simulation, error representation, ……)

o Efficient machine experiment execution through the tool

 Massive data collection / archiving

 Flexible implementation of multiple control point changes in multiple steps

(in user defined pattern)

 Full event reconstruction offline – further facilitates algorithm testing

o More demand on the model

 Main source of machine model information – most logical place to obtain

physics related to real machine – maybe phased

For End Users:

Two modes of end users (by task, not job title):

 Not always the same objectives and preferences.

 Operator mode

o Deliver beam. Well defined path, minimal distraction

o Absolutely free of bugs or likelihood to crash

o Easy to use

o The faster, the better

 Physicist mode

o Understand machine / Commission new methods. Undefined path,

maximal information, tweak/grope on the fly

o Mainly demand on the high level apps design, but low level robustness is

critical

o Modularity – Ability to swap in/out utility/algorithm, input/output modules

efficiently

o Some of the above for developers applies here.

My (biased) Message

o Keep high level apps in mind while developing low level infrastructure.

o Documentation and support will go a long way.

o Most extreme and possibly competing demands come from physicists as developers

and operators as end users.

o A “killer package”, overcoming the inertia in both groups at the same time, may be

what we have to do.

o

